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Equation of State for Fluid Alkali Metals: 
Binodal 

M. M. Martynyuk :'3 and R. Balasubramanian-' 

The three-parameter generalized van der Waals equation of state Ibr liquids and 
gases is analyzed. This equation ccmtains the generalized expression a l'" Ibr 
the molecular pressure: here tile parameter n takes into account the specilicity 
of intermolecular anractivc Ibrces for various substances. The equation is 
presented in tile reduced Ibrm. from which follows tile single-parameter law 
of corresponding states with the thennodynanfic similarity parameter n. 11 is 
established lhal Ior alkali metals tile value of tile parameter n is the same and 
does not depend on temperature substantially. From tile given generalized equa- 
tion, the expressions for the bmodal (equilibrium curve of tile liqtfid and vapor 
phases) are obtained. For cesium, rubidium, and potassiunl, tile temperature 
dependence of density is c;,Iculated over tile temperature range from their 
melting point to tile critical point: tile resuhs of tile calculations agree with 
experinlental data. It is established that for alkali metals, the law of rectilinear 
diameter breaks down m the vicinity of the critical point. 

KEY WORDS: alkali metals: binodal: corresponding states; equation of state: 
Iluid metals: rectilinear diameter: thermodynarnic similarity. 

I. I N T R O D U C T I O N  

Alkali metals are typical metals. Hence the investigation of their thermo- 
dynamic properties is of  great scientific interest. Owing to their high thermal 
conductivity, some of these metals are used as coolants of  the active zone in 
fast neutron nuclear reactors. This fact suggests the great practical value of 
these investigations. 
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In recent years, the thermodynamic properties of cesium, rubidium, 
and potassium in the fluid state have been experimentally investigated over 
the temperature range from their melting point to the critical point. The 
critical point parameters of these metals have also been measured. The 
accuracy of these high-temperature measurements is not good. This can be 
illustrated by the following fact: according to a review [1] ,  the mean value 
of cesium's critical temperature by numerous experimental data is 2043 K, 
whereas recent results [2]  show that this value is 1924K. This fact 
indicates the acute necessity for constructing the high-temperature equation 
of state for alkali metals. 

Numerous equations of state for liquids and gases are known [3].  
Most of them consist of many parameters, which are calculated by experi- 
mental data. Due to the deficiency of the experimental data, these equations 
of state are not suitable for the description of high-temperature thermo- 
dynamic properties of metals. 

The well-known two-parameter van der Waals equation is one of the 
simple equations of state. However, this equation is not suitable for the 
quantitative description of the thermodynamic properties of fluid metals. 
This can easily be seen from the following example: according to this 
equation, for any substance, the liquid phase's reduced density in the low- 
temperature region is around three, whereas the experimental data [2]  
show that this value is greater than five. 

It is therefore necessary to have a simple as well as sufficiently precise 
equation of state for liquids and gases. The present work is dedicated to the 
analysis of the application of the three-parameter generalized van der Waals 
equation of state [4]  for the description of thermodynamic properties of 
fluid alkali metals and to the construction of the equations of the binodal 
(equilibrium curve of the liquid and vapor phases). 

2. GENERALIZED VAN DER WAALS EQUATION OF STATE AND 
SINGLE-PARAMETER LAW OF CORRESPONDING STATES 

The known two-parameter van der Waals equation of state is modified 
[4]  into a three-parameter equation by introducing the third parameter n 
in the expression for molecular pressure. In this way, the three-parameter 
equation of state for 1 mol of substance has the form 

R T  a 
P -  - -  (1) 

V - h  W' 

here P is the pressure; V is the molar volume; R is the universal gas 
constant; and a, b, and n are constants calculated from experimental data. 
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The parameter n takes into account the specificity of intermolecular attrac- 
tive forces of various substances. 

At the critical point we have 

or./,=o, \SF~:_,/,.= 0 i21 

Applying these conditions to the equation of state given by Eq. (1) 
produces two equations in 1,'~ and T~ (V,, is the critical volume, T~ is 
the critical temperature). Eliminating T~ between them gives the critical 
volume: 

n +  1 
~"~ - /,  ( 3 )  

H - -  I 

Back substitution in the two equations then gives the critical tem- 
perature: 

4a n ( n - 1 ) "  i 
T~. R b "  t ( n + l ) , , + l  (4) 

Finally, substitution of 1/" and T~. in Eq. ( 1 ) gives the critical pressure: 

a ( n - l ' ~  ''+t 

The critical compressibility ratio is then given by 

PC I/"~ i i - ' -  1 
Z~ - - -  (6) 

RT~ 4n 

By taking into account Eqs. (3)-(5), we may write Eq. ( 1 ) in terms of 
reduced variables n = P/Pc, 9 = 1,71"~, r = TITs: 

1 [ 4nr n + l ]  
zt = (P" (7) n - I  (11+1)¢p- - (11 -1 )  

The reduced equation of state, Eq. (7), expresses the single-parameter 
law of corresponding states with the thermodynamic similarity parameter n. 
In this way, the substances with the same value of the parameter n are 
thermodynamically similar. It follows from Eqs. (3) and (6) that the 
parameter b/V~ or Z~ can also be used as the thermodynamic similarity 
parameter instead of parameter n, because these parameters are expressed 
through the parameter i1. 



536 Marlynyuk and Balasubramanian 

3 .  B I N O D A L  

The binodal is defined by the equalities of the Gibbs free energy, the 
pressure, and the temperature of the liquid and vapor phases: 

GI = G,_, PI = P 2 ,  T I = T ,  (8 )  

Here indices 1 and 2 refer to the liquid and vapor phases, respectively. 
For the fluids whose properties are described by Eq. (7), we have the 

Mlowing expression for the Gibbs free energy: 

G*= G = r t ( n +  1)(p In L (''+1)(p-(''-I)] 
RT~ (n + I) , p - ( , , -  1) ; ; +  i 

C,. C} ( n + l )  2 
+--~- ( 1 - l n  r ) -  4 (n - - I  )(p" 9) 

where C,. is the isochoric heat capacity and C is the constant of integrahon 
in the expression for the entropy. 

Taking into account the expression for the Gibbs free energy, Eq. (9), 
and also assuing that C,q - C,._, = C, and r i = r ,  = r, we obtain, presuming 
the equality of the Gibbs fi'ee energy for the liquid and vapor phases, the 
equation o1" the bmodal in & r coordinates (~5 = 1/(p is the reduced density): 

t (n + l ) ( n -  1)((51 - ~ ; )  
r [ n + l - ( n - l ) ( S j ] [ n + l - ( n - l ) ( ~ 2 ] + l n  

(n + 1 )2 

4( n -  1 ) 

a,(,, + l - ( 2 -  1 ) ,5._)] } 
(52(11+1 (11-- 1 ) ¢~Jl) ] 

_ _ ( ( 5 ,  I I_($,, I ) =  0 (10) 

Equation (7) along with the assumption that r ~ = r 2 = r  yields, 
assuming the equality of the pressure for the liquid and vapor phases, the 
equation of the binodal in another form: 

4n( ,~ i - (5:) r 
[ n +  1 - ( n -  1 ) ,S j ] [n  + I - ( n -  1 ) (~2] 

- -  (,5'~ - -  ~ )  = 0 ( 1 1 )  

In the low-temperature region, the vapor-phase density can be 
neglected in comparison to the liquid-phase density ((52 = 0). In this region, 
the equation of the binodal, Eq. I 1 1 ), takes tile forrn 

4~r 
( n + l ) [ n + l - ( n - l ) ( S i ]  (5'~ 1=0  (I -) ) 
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The equation of the binodal, Eq. (10), obtained flom the equality of 
the Gibbs fi'ee energy for the liquid and vapor phases can be rewritten in 
¢,J, 0 coordinates ( ( 0 = 5 - 1 ,  O= l - r ) .  In the vicinity of the critical point 
we have 

~,)E < 1, ~ o , < 1  ( 1 3 )  

Taking account of these conditions, expanding Eq. (10) into a Taylor's 
series, and limiting ourselves to the third-order terms, we obtain the 
approximate equation of the binodal in the vicinity of the critical point: 

{ (n+  1 ) ( n -  1 ) - 0 [ ( n  + 1) - ' -2 (3 - . ) ( . -  1)]]( ,o~+,o,(o2+~o~ _) 

+6(2  - i t ) 0 ( ( o  I + (O2)-- 1 2 0 = 0  (14) 

In a similar way. from Eq. ( I 1 ), which was obtained fi'om the equality 
of the pressure for the liquid and vapor phases, we obtain another 
approximate equation of the bmodal in the vicinity of the critical point: 

[ 6 + 3 ( .  - l )(,o, + (,~:) + (,t - 1 )(n - 2 )(,o~ + ,o, (o2 + (o~)] 

× [ 2 - ( n -  l ) t o l ] [ 2 - - ( n - -  1)(oi l  --24(1 - - # ) = 0  (15) 

4. C A L C U L A T I O N  O F  E Q U A T I O N ' S  P A R A M E T E R S  

The parameters a. Iv. and n in Eq. (1) were calculated by us through 
various methods. The formulas used in these calculations are given below. 

It follows from Eq . ( l )  with T = 0 ,  P = 0  that the parameter h is 
equal to 

/l 
h = ! "l, - D.  ( 16 ) 

Here Do is the density of the condensed phase at absolute zero; /l is the 
molar mass of the substance. 

According to Eq. (1), the heat of sublimation of the condensed phase 
at absolute zero is equal to 

• "! i 'gl (I , '1o= ]-~3 a l l ' =  -,, I ( 1 7 )  
, ( n -  1 ) I ~, 

The parameter n may be calculated through the critical parameters of 
the substances. From Eq. (3) we have 

n -  ( 1 8 )  
t ' ~ - h  
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The parameter n can also be calculated through the critical tem- 
perature T~,. Taking into account the expressions for the parameters a 
[Eq. {17)] and /~ [Eq. (16)], from Eq. (4)we have 

4.10 J l (n -  1 )" 
T~ R (11+ 1) ''+~ (19) 

The equation of the binodal may also be used for the calculation of the 
parameters a, I~, and n. According to Eq. ( 1 ), and equating the pressure for 
the liquid and vapor phases, we obtain the equation of the bmodal: 

( 1 1 (l l  )=0 (20) 
RT I'~-I~ I'_ h) - a  ~"',_ 

Furthermore, according to Eq. (1), the heat of evaporation of the 
condensed phase at the given point of the binodal is represented by 

" fl-'t a . 
z J H , = ( U , - U t I + P ( I ' 2 - 1 j ) =  i-gall + P ( I ' _ , - I  I) (21) 

where U is the internal energy and P is the saturated vapor pressure at the 
given point of the binodal. 

From Eq. (21) we have 

(/=',){ i dH,.= 1' I I"~'- I +P(I"_ , -  I" I) {22) 

Now we will consider various methods of calculating the parameters 
a. b. and n. 

Method J. The parameter h is calculated by Eq. (16) through l.'o 
[5]. The parameter n is calculated by Eq. (18)through l'~. [2]. Finally. the 
parameter a is calculated by Eq. (17) through I'o [5] and A,, [6]. 

Method K. Tile parameter h is calculated by Eq. (16) through l',, 
I-5]. The parameter n is calculated by Eq. (19) through T~ [2] and Ao [6]. 
The parameter a is calculated by Eq. (17) through l',, [5] and Ao [6]. 

Method L. At the melting point, the volume of" the vapor phase is 
much higher than that of the liquid phase ( I'2 > I"1 ). Hence Eq. (22) takes 
the form 

(/ 
A H , . - ( n _ I )  ¢-,; t+PV'-  (23) 
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Assuming the vapor at the melting point as an ideal gas, we can 
rewrite Eq. (23) as 

( /  

J H , . -  ~ + R T  (24) 
( n -1 )  I"~ 

In the low-temperature region (l," 2 >> I:'~) including the melting point, 
the equation of the binodal. Eq. (20), takes the form 

R T  a 
0 (25) 

We write Eqs. (24) and (25) for the melting point. Then solving the 
system of these equations together with the equation for T:, Eq. (4), we 
obtain the values of the parameters a, h, and n. In these calculations we use 
the experimental data [7, 8] Ibr the melting point and the experimental 
data [2] for T: of alkali metals. 

Method M. The parameter h is calculated by Eq. (16) through V~, 
[5]. We write the equation of the binodal, Eq. (20), and the equation for 
JH,,, Eq. (22), for the normal boiling point. Then, solving the system of 
these equations, we obtain the values of the parameters a and n. In these 
calculations we use the experimental data [7, 8] for JH, . ,  V~ at the normal 
boiling point, and also the values for I'~ calculated from the equation of 
state for an ideal gas. 

Method N. The substitution of I'~ in the first equality of Eq. (2) by 
Eq. (3) gives the expression lbr the parameter a: 

a - ( 2 6  ) 

Finally. substitution of Eq. (26) in Eq. (1) gives the quadratic equation 

P:l~'- + RT:h  - P: I'~. = 0 (27) 

Due to physical considerations (h>0) ,  one of the solutions of this 
equation gives the expression for the parameter h: 

I" 
/, ----% [(1 + 4Z~.) ~ 2_ 1] (28) 

- 2 Z ~  

Here Z:  = P: VJRT~. is the critical compressibility ratio. 
In this way, the parameter h is calculated by Eq. (28) through P:, V~., 

and T~, [2]. Then the parameter n is calculated by Eq.(18) through I:. 
[2]. Finally, the parameter a is calculated by Eq. (26). 

:':4qJ It, 2-i , ' ,  
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Table I. Thenlmdynamic Similarity Parameter i i  for Alkali Metals 

Parameter n for given method of calculation 

Metal J K L M N 

Cesium 1.464 1.464 1.511 1.436 1.483 
Rubidium 1.439 1.455 1.523 1.455 1.529 
Potassium 1.535 1.481 1.515 1.428 1.409 

Mean value 1.479 1.467 1.516 1.440 1.474 

The results of the calculations of the thermodynamic similarity 
parameter n for alkali metals are presented in Table I. The calculations 
show that for the given method the value of n for cesium, rubidium, and 
potassium is the same if one confines oneself to the accuracy of the used 
experimental data. This fact gives the basis for considering the parameter 
n as a thermodynamic similarity parameter for alkali metals and for 
these metals the single-parameter law of corresponding states is satisfied. 
Moreover, the value of n practically does not depend on the method of 
its calculation. In various methods, experimental data at different tem- 
peratures are used. So, it can be considered that the value of n for alkali 
metals does not depend on temperature substantially. From here, it can be 
concluded that the generalized van der Waals equation of state given by 
Eqs. (1) and (7) is suitable for the calculation of the thermodynamic 
properties of alkali metals in the liquid and vapor phases over a temperature 
range from their melting point to the critical point. 

5. C A L C U L A T I O N  OF B I N O D A L  

For cesium, rubidium, and potassium, we carried out the calculations 
of the binodal in 5, r coordinates, followed by a change to D, T coor- 
dinates. In these calculations we used the experimental data for Tc and V¢ 
from Hensel and Uchtmann [2] .  

In the low-temperature region, we calculated the temperature 
dependence of the density of alkali metals by Eq. (12). In the vicinity of the 
critical point, we calculated the temperature dependence of the densities ~ 
and ¢~2 by solving the system of approximate equations (14) and (15). In 
these calculations we used the value of the parameter n obtained by 
method L (Table I). 

For cesium and rubidium, the temperature dependence of the density 
of the liquid phase in the saturation curve is presented in Figs. 1 and 2. 
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Fig. I. Teperature dependence of the density of liquid cesium 
on the binodal. Continuous line, calculation: Q). experimental 
data [7]; O. experimental data [9]. 
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Fig. 2, Temperatttre dependence of the density of liquid 
rubiditun on the binodal. Continuous line. calculation: 
Q ,  experimental data [7]; O, experimental data [9].  
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The results of our calculations satisfactorily agree with experimental data 
reported by other authors [7, 9, 10]. 

In the vicinity of the critical point, we represented [11] thc tem- 
perature dependence of the density of the liquid phase ,5, by the formuh| 

,~, - 1 = A ( I  - r}/; '  129) 

In the vicinity of the critical point, the difl'erence of the density of the 
liquid phase r~, and the density of the vapor phase ¢~_, was represented by 
Goldhammer 's  formula: 

r~, - ~ ,  = B(I - r)/; (30} 

By the least square method, we calculated the parametet's A, B, f l , ,  

and fl of Eqs. 129) and (301 using the density data from Eqs. 114) and (15). 
For cesium, rubidiuna, and potassium, the mean values of the critical 
amplitudes are equal to A =3.690, B =  3,499 and those of the critical 
indices are equal to [)', = 0.5122. fl=0.4065. 

The results of our calculations for alkali metals show that the law of 
rectilinear diameter does not hold in the vicinity of the critical point. In this 
region, the temperature dependence of the mean value of the density 
, S j= l¢~  +,~2)/2 is a nonlinear function and it can be expressed by the 
formula 

~ , t -  1 = E ( 1  - r) : '  ( 3 1 )  

According to our calculations for cesium, rubidium, and potassium, 
the mean values of these parameters are equal to E =  3.031, ~'= 0.7941. For 
cesium and rubidium, the violation of the law of rectilinear dianaeter was 
experimentally established earlier by Jungst et al. [9].  

6. C O N C L U S I O N  

This work shows that the three-parameter generalized van der Waals 
equation of state [4]  is suitable for describing the thermodynamic proper- 
ties of fluid alkali metals over the temperature range fi'om their melting 
point to the critical point. 
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